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ABSTRACT

Natural vibration frequencies of orthotropic and anisotropic simply
supported right circular cylinders are predicted using a higher-order
transverse-shear deformation theory. A comparison of natural vibration
frequencies predicted by first-order transverse-shear deformation theory and
the higher-order theory shows that an additional allowance for transverse
shear deformation has a negligible effect on the lowest predicted natural
vibration frequencies of laminated cylinders but significantly reduces the
higher natural vibration frequencies. A parametric study of the effects of
ply orientation on the natural vibration frequencies of laminated cylinders
indicates that while stacking sequence affects natural vibration
frequencies, cylinder geometry is more important in accurately predicting
transverse-shear deformation effects. Interaction curves for cylinders
subjected to axial compressive loadings and low natural vibration
frequencies indicate that transverse shearing effects are less important in
predicting low natural vibration frequencies than in predicting axial
compressive buckling loads. The effects of anisotropy are more important
than the effects of transverse shear deformation for most strongly
anisotropic laminated cylinders in predicting natural vibration frequencies.
However, transverse-shear deformation effects are important in predicting
high natural vibration frequencies of thick-walled laminated cylinders.
Neglecting either anisotropic effects or transverse-shear deformation
effects leads to non-conservative errors in predicted natural vibration

frequencies.




INTRODUCTION

Laminated composite materials have high strength-to-weight and
stiffness-to-weight ratios that make them useful for building light-weight
structural components. However, composite materials also have low
transverse shear moduli which permit more transverse shearing to occur in
composites than in metals. As a result, composite cylinders can have lower
natural vibration frequencies than predicted by conventional first-order
transverse-shear-deformation shell theory. Since laminated composites are
increasingly being used as structural components, the effects of transverse
shear deformation should be taken into account in designing laminated
components to assure that the natural vibration frequencies of these
structures are evaluated accurately. An extensive survey of shell vibration
work up to 1973 is presented in reference 1. 1In reference 1, transverse
shear deformation and orthotropy are discussed but anisotropy is only
briefly mentioned. Some work has been done in the area of vibration of
composite cylinders (e.g., ref. 2-5), but few studies account for both
transverse shear deformation and anisotropic effects.

For laminated cylinders, the effects of transverse shear deformation on
low natural vibration frequencies with long wavelengths are small and
conventional first-order transverse-shear deformation theory accurately
predicts the lowest frequencies. For higher frequencies with short
wavelengths, transverse-shear deformation effects can become important and
predictions based on the first-order theory are not always accurate. First-
order transverse-shear deformation theory takes into account some of the
effects of transverse shearing and predicts accurate natural vibration

frequencies for low frequencies, but this theory is insufficient to account



for the amount of transverse shearing in some thick-walled laminated
cylinders vibrating at high frequencies.

Predictions of natural vibration frequencies are found by using a
procedure similar to that used to find critical buckling loads. In the
theory developed in references 6 and 7 for predicting buckling loads of
shells, the three-dimensional equations of elasticity are reduced to two
dimensions by assuming trigonometric functions in the thickness direction
for strains and displacements in addition to the constant and linear terms
more commonly used. The assumed displacements and stresses can be reduced
to those of the first-order transverse-shear deformation shell theory by
removing the through-the-thickness trigonometric terms. A variational
procedure is applied to the equations of elasticity to obtain differential
equations using the potential energy method. Nine assumed displacement
terms are used in reference 6 so the variational procedure yields nine
simultaneous second-order differential equations. These resulting
differential equations are left in terms of integrals in the axial and
radial directions and are functions of stresses and derivatives of stresses.
These differential equations are solved to find numerical values of buckling
loads in reference 8.

In the present paper the natural vibration frequencies of orthotropic
and anisotropic simply supported right circular cylinders are predicted
using a theory which takes into account higher-order transverse-shear
deformation effects. The equilibrium equations presented in reference 8 are
solved to find natural vibration frequencies instead of critical buckling
loads. The eigenvalue problem is solved numerically to obtain the natural

vibration frequencies of several types of cylinders. A comparison is made




between results based on first-order transverse-shear deformation theory and
the higher-order theory.

Ply orientation can affect the reduction in natural vibration
frequencies due to transverse shear deformation. Results of a parametric

study of ply orientations for two classes of laminates, [;+_0/90]4s and [i&]s,

. o ) . .

are presented for values of 4 ranging from 0 to 90 . The interaction of
critical axial compressive loads and natural vibration frequencies for
laminated cylinders of orthotropic and anisotropic stacking sequences is

also presented.

ANALYSIS APPROACH

The results presented in this paper are obtained by applying the theory
presented in references 6-8. In these references the potential energy
method is used to obtain equations for the buckling of right circular
cylinders using a coordinate system with axes (x, #, z), displacements

(u, v, w), and cylinder dimensions (L, R, t) as shown in the sketch.




Vibration of Orthotropic Cylinders

The cylinder displacements assumed in this study to represent the
higher-order thickness effects of transverse shear deformation in

orthotropic cylinders are shown in equations (1).
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The series in equations (1) have three types of terms, all of which are
functions of x and §¢. The traditional terms from classical Kirchhoff-
Love theory (those independent of position in the radial direction) are
represented by superscript o. The displacements of classical Kirchhoff-

Love theory can be obtained by neglecting the superscript 1 terms and the
a . a o a o} X .
w term and by assuming that u = -w - and that v = -w 'y in equations

(1). The additional terms associated with conventional Reissner-Mindlin
first-order transverse-shear deformation theory (those linear in z) are
represented by superscript a. The displacements of conventional Reissner-

Mindlin first-order transverse-shear deformation theory can be obtained by

neglecting the superscript 1 and the w? terms. The assumed displacement
series also includes trigonometric terms in the through-the-thickness
(radial) direction, which are represented by the terms with superscript 1.
By including these additional terms in the assumed displacement series, a

more accurate solution can be obtained because more three-dimensional




effects are permitted than in the solutions with fewer assumed displacement
terms.

Differential equations and boundary conditions for predicting the
buckling loads of right circular cylinders are developed in reference 8 by
using the potential energy method. The method used in reference 8 for
predicting buckling loads is used in this paper to predict natural vibration

frequencies. The virtual work of the cylinder is shown in equation (2).
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ez’ 7X€, 7xz’ and 702 are the strains, p 1is the density, and w 1is

the natural vibration frequency of the cylinder.

The differential equations used to derive equilibrium equations based
on the displacements in equations (1) are presented in references 6-8.
The differential equations in references 6-8, modified to account for
vibration frequencies instead of compressive buckling loads, are presented
in equations (3). Since there are nine assumed displacement terms, there

are nine differential equations.
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where 6uo, Sua, 5u1, ... are the displacement variations. The

equilibrium equations for the cylinder are obtained from equations (3) by
integrating by parts.

The differential equations represented by the arguments of equations
(3) can be reduced to linear equations containing only the displacements and
natural vibration frequencies as unknowns by using the following stress-
strain and strain-displacement relations as derived in references 6 and 9

(and neglecting all nonlinear terms).
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where [Cij] is the orthotropic material stiffness matrix.

The dependence of the displacements on the axial and circumferencial

coordinates can be expressed in the form:
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where the superscripted terms

are constants (independent of position). The

cylinder displacement pattern is assumed to consist of m half waves in the
longitudinal direction and n full waves in the circumferencial direction.

Simple support boundary conditions w = Vg ~ V=W = 0 are assumed.

Substituting equations (4) and (5) into equations (3) and integrating

in the radial direction gives the following equations:



ORIGINAL PAGE IS
OF POOR QUALITY,

- - - - -1 y -
ﬂuo + avO 4 kw - §v‘ + 26v + i K wl = plw?/2 v©

-0 -0 -0 mr -a -a 2mr -1 -1 2 -1
Yyu + kv + nw + ze U + énv + ze T 4 + 2név. + v
- plw?/2 O+ wl %)
mr -0 a ze -a  f -a Y -a o 2 -1
ze—Lw +(Ti+_-t) +-i—2-v +'17w +(;—§ zef:)
a 1
B 1 2m -1 2 M u
+ ﬂz v o+ GXZ v pLlw? /2 (12 + 2;7)
-0 -0 B -a -a K -a -1
- &v + énw 4+ 5 U + [A/12 + ng/t]v + Yot Bu” +
2 1 a 1

- 2n-1 v v
2 o — = 2 —
[A/n? + : ng] ve o+ Ew w plw? /2 (12 + 2;7)

¥/12 o® + %5 V2 o+ G+ =) v+ P 0+ 27 S R Y w2/12 (6)
m n
2
2mr -0 a 2n -a 2 -a Y -a 1 T -1
ze - v + (—“—2-+ ze(_t—)) u + B/ v o+ -7? + é(a + ze T) u
1, -1 mwz (o) ua u1
- — o = 2 —
+ zﬁ v o+ ze v plw? /2 (2;7 + 5 )
2 -0 -0 2 -a 2 2 -a kK -a  f -1
-€ - + £2nw + B/ u + [A/n7 + H Gzﬂ] v +-;7 w o+ 5 U +
e onr -1 v: oot
—_— M — 0 = 2
[a + y Gzﬂ] 5 + 5 & w plw? /2 (2;7 + f—)
2
2, -0 2 -o 2 -0 2m -a 2n -a mr~ -1 nn -1
7}6\1 +7-rK,V +7-r17W +GXZ-I"—-U +§‘;—'V +zeﬁ-u +T§V+
w2 1 -1 W wt
—_— Y = 2 e
(n + T C33) 5 W plw? /2 (21r + T)

where a =[Cll(m1r/L)2 + Gxo(n/R)z] t
8 -—-(C12 + Gxﬁ) mnat /(RL)

¥=C,omtm /(RL)



A =[022 (n/R)2 + Gxe(mn/L)2 + GZH/RZ] t

2
-(_C22 + Gxg)(n/R) t

x
If

1 =10,y /R2 + G (mn/L)° + 6, (/R)7] ¢

£ =G20/R

and Cll’ C12‘ C22, Gx&’ ze’ and ng are properties of the cylinder

wall.
Natural vibration frequencies can be found by reducing equations (6)

to matrix form as shown in equation (7).
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The matrix [K! contains the coefficients of the displacement terms on the

left hand side of equations (6) and the matrix [B] contains the

coefficients of the displacement terms associated with the natural vibration

frequency on the right hand side of equations (6). The values of w? which

are solutions to the eigenvalue problem in equation (7) are the squares of

the natural vibration frequencies.
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If the natural vibration frequencies of a cylinder subjected to axial
compression are to be found, a value for the applied compressive load must

be selected and included in the matrix [K] as discussed in reference 8.

Vibration of Anisotropic Cylinders

The formulation of the eigenvalue problem for anisotropic cylinders is
similar to the formulation of the eigenvalue problem for orthotropic
cylinders. The same equilibrium and strain-displacement equations are used
in the analysis of the anisotropic cylinders as in the analysis of the
orthotropic cylinders, as shown in equations (2-4). The stress-strain
equations are altered to include the anisotropic effects which are

represented by the C16 and C26 terms in equations (8).

o =2C e + C €, + C167x0

o, =C e + C €, + c267x0 (8)
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The displacements used in the anisotropic analysis are similar to those
given in equations (5), but the series are expanded to include the sum of
several values of m while retaining only one value of n. Several values
of m are included to account for displacements in the axial direction
which are not in the shape of a pure sine wave. Two Fourier series in the
axial direction are used to represent the displacements in the radial
direction. One series includes symmetric modes and one series includes

.antisymmetric modes. Each series is truncated when enough terms have been

11



included to reach convergence. Similar assumptions are made for the
displacement series in the axial and circumferencial directions. The
assumed displacements for an anisotropic cylinder are given in equations (9)

where a total of N terms are included in each displacement.

N
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The same procedure for reducing the differential equations of
equilibrium to linear equations used for the analysis of the orthotropic
cylinders is used for the analysis of the anisotropic cylinders. The same
boundary conditions assumed for the orthotropic analysis are assumed for the
anisotropic analysis. There are nine equations and nine unknown
displacements for each value of m for the displacements represented by

equations (9). The matrix [K]A contains all the orthotropic terms in ([K]

for several axial wavelengths (mode shapes) and the anisotropic terms which

12



result from the combination of wavelengths. Similarly, the matrix [B]A

contains all the terms found in [B] for several wavelengths. There is no

anisotropic contribution to [B]A because of orthogonality. Therefore, for 5
values of m, N=5 in equations (9) and the matricies [K]A and [B]A have

dimensions 45 by 45. The eigenvalue problem whose solutions are the square
of the natural vibration frequencies of an anisotropic cylinder is shown in

equation (10).
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The number ulL waveleungths whicil hecus wu be included in equations (10)
to obtain accurate frequencies is dependent on the geometry and properties
of the cylinder. Including an infinite number of wavelengths would give the
most accurate solution. Approximate solutions are obtained by using a
limited number of wavelengths. The more wavelengths used, the more accurate
are the frequencies, but as each additional wavelength is added, the
difference between frequencies predicted by equation (10) with N and with

N+1 wavelengths decreases until the predicted load has converged to the

13



same frequency as predicted by an infinite number of wavelengths. The
natural vibration frequency for an axially loaded cylinder is found in the

same way as for the orthotropic cylinder.

RESULTS AND DISCUSSION

Natural vibration frequencies of laminated cylinders are determined
from the conventional first-order transverse-shear deformation theory and
the present higher-order transverse-shear deformation theory. The cylinders
are assumed to be simply supported and without any initial geometric

imperfections.

Natural Vibration Frequencies of Orthotropic Cvlinders

Natural vibration frequencies predicted by the conventional first-order
transverse-shear deformation theory are compared to frequencies predicted by

the present higher-order theory for cylinders of laminates [1'45/90]4s and

[45] in figure 1. Several radius-to-thickness ratios, R/t, and length-

6s
to-radius ratios, L/R are included for each laminate. Vibration

frequencies predicted by the first-order theory are represented by the solid
curves and those predicted by the higher-order theory are represented by the
dashed curves. Frequencies for circumferencial wave numbers n=1 through 10

are presented for three cylinder geometries. The natural frequencies are

expressed in terms of a nondimensional parameter, w = wJpRE/Et, based on the

14



density, p, and stiffness, Et’ of the material and the radius, R, and

natural frequency, w, of the cylinder.
The in-plane material properties of Hercules Incorporated AS4-3502
graphite-epoxy unidirectional preimpregnated tape are assumed for the study

(i.e., El/Et= 11.3, Glt/Et=’53)' The transverse properties assumed for the
study are based on references 10 and 11 and are Glz/Glt= 1., Gtz/Ez = 1.

and Gtz/clt = .57, (where 1, t, and =z represent the longitudinal,

transverse and through-the-thickness directions of a O-degree unidirectional
laminate, respectively). In laminate definitions stacking sequences are
defined such that each lamina of a given cylinder is of the same thickness

(i.e., tply # .005 etc.). Calculations are based on the radius, length and

total thickness of each cylinder.

Including anisotropic effects in the analysis of the [i45/90]4S and
the [i45]6s laminated cylinders has no effect on the natural vibration

frequencies. These laminates are mildly anisotropic and can be considered
to be orthotropic. For cylinders of both laminates and with R/t=100 and

L/R=10, the first-order theory accounts for all effects of transverse

shearing which are predicted by the higher-order theory. The solid and
dashed curves are identical. For the cylinder geometries with R/t=10 and
L/R=10 and with R/t=5 and L/R=2, the first-order theory does not account
for all effects of transverse shearing which are predicted by the higher-
order theory. The difference between the predictions of the two theories
can be seen for the higher wave numbers. The larger the wave number, the
more significant is the reduction in vibration frequency due to transverse

shearing.
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Natural Vibration Frequencies of Anisotropic Cylinders

Anicotropy can have a significant effect on the natural vibration
frequencies of laminated cylinders. In the study of natural vibration
frequencies which follows, only the effects of the material properties and
cylinder geometries are examined.

Vibration frequencies for three cylinder geometries with two stacking

sequences of unsymmetrically laminated cylinders, [90/45]T and [45/90]T, are
shown in figure 2. The results are presented for predictions based on the

first-order and higher-order theories by assuming that anisotropic effects
are neglected (the curves labeled "orthotropic") and by assuming that
anisotropic effects are included (the curves labeled "anisotropic"). As in
figure 1, the same frequencies are predicted by the first- and higher-order
theories for the thin-walled cylinder, with R/t=100 and L/R=10. However,
there is a reduction in the predicted frequencies due to anisotropic
effects. For these laminates the effect of anisotropy on the natural
vibration frequencies is more significant than the effect of transverse
shear deformation. Similar effects are shown for the thicker-walled
cylinders. The first- and higher-order theories predict almost the same
natural vibration frequencies for low wave numbers but not for higher wave
numbers. Both transverse shear deformation and anisotropic effects reduce
the predicted natural vibration frequencies. The difference between the two
solid lines is the difference between the orthotropic prediction and the
anisotropic prediction for the first-order theory. The difference between
the two dashed lines is the difference between the orthotropic prediction

and the anisotropic prediction for the higher-order theory. The difference

16



between the higher solid and higher dashed lines is the difference between
the orthotropic prediction of first- and higher-order theories. The
difference between the lower solid and lower dashed lines is the difference
between the anisotropic prediction of first- and higher-order theories. For
each cylinder geometry the difference between the two solid lines or the two
dashed lines is larger than the difference between the higher dashed and
solid lines or the lower dashed and solid lines. There is little dependence

of the natural frequencies on the details of ply orientation, the laminate

with the 90° ply on the outside and the 45° Ply on the inside of the
cylinder has almost the same natural vibration frequencies as the cylinder
with the plies reversed.

The natural vibration frequencies for three cylinder geometries with

[i&S]S laminates are shown in figure 3. For the thin-walled cylinder and

the moderately thick-walled cylinder, the effects of anisotropy are more
significant than the effects of transverse shearing. For the thickest-
walled cylinder, the effects of transverse shearing are more significant
than the effects of anisotropy. For all three geometries, the effects of
both anisotropy and transverse shearing become more important as the

circumferencial wave number increases.

Effect of Stacking Sequence on Natural Vibration Frequencies

Results of parametric studies of the effects of stacking sequence on

the natural vibration frequencies for cylinders with [16/90]4s and [1'9]s

laminates are shown in figures 4 and 5, respectively. The same

nondimensional parameter used to express the natural vibration frequency in
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figures 1-3 is used in figures 4 and 5. The dependence of the natural

frequency on the value of 6 ranging from 0° to 90° is shown for three
cylinder geometries. Natural frequencies for two wave numbers, the one
producing the lowest natural vibration frequency (generally n=1 or n=2) and
n=10, are shown for the first-order and the higher-order transverse-shear
deformation theories.

For the thin-walled cylinders, the effect of transverse-shear
deformation is negligible for both wave numbers shown in figures 4 and 5.
However, transverse shearing does decrease the natural vibration frequencies
in the thicker-walled cylinders. The most significant difference in natural

vibration frequency between the first-order theory and the higher-order

theory is when n=10 and R/t=5. For the thick-walled cylinders vibrating
at high frequencies, the additional effects of transverse shearing predicted
by the higher-order theory lead to predictions of natural vibration
frequencies which are 10 percent lower than predictions based on the first-
order theory for both types of laminates.

The effects of anisotropy decrease natural vibration frequencies by as
much as the effects of transverse shearing in strongly anisotropic

laminates. Anisotropic effects are most significant for the higher

frequencies with 35° < & < 55°.

Natural Vibration Frequencies of Cylinders Subjected to Axial Compression

Natural vibration frequencies of laminated cylinders subjected to axial
compressive loads are shown in figures 6-8. The solid lines represent the

interaction of axial compressive loads and natural vibration frequencies

18



based on the first-order theory. The dashed lines represent the interaction
based on the higher-order theory. The frequencies are expressed as a
function of applied axial compressive load for cylinders with laminates

[145/90]4s in figure 6 and [145]s in figure 7 for low wave numbers and with
[i45/90145 in figure 8 for high wave numbers. The results are expressed in

nondimensional parameters based on the frequency when no load is applied and
the axial compressive buckling load when the cylinder is not vibrating.

The effects of transverse shearing on the natural vibration frequency
are very small for low wave numbers for all three cylinders shown. The
effects of transverse shearing on the axial compressive buckling load is
significant in the case of the very thick-walled cylinder but not in the
other cases studied. The frequencies and loads are shown for two wave
numbers in figure 6.

Anisotropic effects are more significant than transverse-shearing
effects for the lower vibration frequencies of the strongly anisotropic

laminate, [tAS]s, for both an applied axial compressive load and for a

vibration frequency. However, the effects of anisotropy are more important
in predicting the axial compressive buckling load. The difference in
buckling loads predicted by including anisotropic effects and by neglecting
them is about 15 percent while the difference in the lowest natural
vibration frequencies predicted by including anisotropic effects and by
neglecting them is only about 5 percent. The effect of accounting for
transverse shearing which is neglected by the first-order theory is to
reduce the buckling load by less than 5 percent and the frequency by less

than 3 percent.
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The interaction curves for wave number n=10 of two [i'l+5/90]as

laminated cylinders are shown in figure 8. The first cylinder is thin
walled (R/t=100) and the second cylinder is thick walled (R/t=10). Almost
no difference can be seen in the predictions based on the first- and higher-
order theories for the thin-walled cylinder. Anisotropic effects do not
affect the vibration frequency when little axial compressive load is
applied, but they become important when the axial compressive load
approaches the critical buckling load of the cylinder. When only axial
compression is applied, neglecting anisotropic effects leads to a predicted
buckling load which is about 7 percent higher than the predicted buckling
load found by including anisotropic effects.

There is a significant difference between the predictions based on the
first- and higher-order theories for the thick-walled cylinder. Transverse-
shear deformation effects reduce the predicted natural vibration frequency
by about 7 percent and the predicted buckling load by about 7 percent.
Anisotropic effects do not affect the vibration frequency when little axial
compressive load is applied. Neglecting them leads to a predicted buckling
load which is about 4 percent higher than predicted buckling loads found by
including them when only an axial compressive load is applied. The
interaction curves of both cylinders have a constant frequency ratio for
axial compressive loads less than 40 percent of the critical buckling load.
For the higher wave number, n=10, the minimum eigenvalue is found when the
axial wave number m is equal to one when the frequency ratio is greater
than .9 . The minimum eigenvalue is found at m=1 when the axial
compression ratio is less than .3 for the thin-walled cylinders and less

than .66 for the thick-walled cylinders. When the axial compression ratio
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is greater than .85, the axial wave number is constant for a given cylinder.
For the thin-walled cylinder that constant wave number is m=24. For the
thick-walled cylinder it is m=38. The curved section of each interaction
curve is the transition range when the axial compression ratio is below .85
for thin- and thick-walled cylinders and is above .3 for the thin-walled

cylinders and above .66 for the thick-walled cylinders.

Natural Vibration Frequencies in Accoustic Range

Natural vibration frequencies can be of concern when evaluating noise
transmission characteristics of composite plates and shells (ref. 12). The
frequency range of most concern is between 100 Hz and 10 kHz. All the
frequencies shown on figure 1 for the thin-walled shell (R/t=100) are within
this frequency range except for the minimum frequency for n=2. The
frequencies for n=1-3 are in the accoustic range for the thick-walled
shell (R/t=10) but none of the frequencies shown in figure 1 are in this
range for the very thick-walled shell (R/t=5).

In comparing graphite-epoxy and aluminum panels designed to carry the
same load, the graphite-epoxy panels are usually lighter and have higher
fundamental vibration frequencies. Studies (e.g., ref. 12) indicate that
composite panels have higher transmission loss than aluminum panels at or
below the fundamental vibration frequency of the comparable aluminum panel.
For frequencies above the fundamental vibration frequency of the aluminum
panel, the aluminum panels have higher transmission loss because of their
higher weight. Since higher transmission loss is desirable, composite
panels may be useful for suppressing low frequency noise transmission

problems.
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CONCLUDING REMARKS

An analytical study of the effects of transverse shear deformation and
anisotropy on the natural vibration frequencies of orthotropic and
anisotropic laminated cylinders was conducted. The effects on natural
vibration frequencies of adding higher-order terms in the form of
trigonometric terms through-the-thickness to the displacement series of
conventional first-order transverse-shear deformation shell theories were
studied. Natural vibration frequencies predicted by the first-order
transverse-shear deformation theory and the higher-order theory were
compared to determine which cylinder geometries and laminate stacking
sequences have a reduction in natural vibration frequencies due to
transverse shearing. A parametric study of natural vibration frequencies of

cylinders with [i8/90]ns and [ie]nS laminates was conducted to determine

which laminates are most sensitive to transverse-shear deformation effects.
Anisotropic effects were studied by comparing natural vibration frequencies
predicted by the first-order transverse-shear deformation theory and by the
higher-order theory with anisotropic material properties neglected and with
anisotropic material properties included. The interaction of axial
compression and natural vibration frequencies was also studied. Natural
vibration frequencies were evaluated for cylinders subjected to axial
compressive loadings up to the critical buckling load of the cylinder with
no vibration.

Transverse shear deformation and anisotropy have the largest effect on
natural vibration frequencies in cylinders which are moderately-thick-

(e.g., R/t=10) or thick-walled (e.g., R/t=5) and for higher vibration
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frequencies. In thin-walled cylinders no effects of transverse shear
deformation are predicted by the higher-order theory which are not predicted
by the first-order theory. For moderately-thick- and thick-walled
cylinders, the effects of transverse shear deformation on the natural
vibration frequencies are significant for higher wave numbers. Anisotropy
has a significant effect on higher vibration frequencies of strongly

anisotropic laminated cylinders, such as those with a [i45]s wall laminate.
Results of parametric studies of cylinders with [19/90]45 and [te]s

laminates indicate that first-order theory is accurate at predicting natural

vibration frequencies for low wave numbers for all values of 6 from 0° to

90°. For higher wave numbers, the natural vibration frequencies predicted

by the higher-order theory are slightly below those predicted by the first-
order theory for 6 near 90° but are significantly below those predicted by

the first-order theory for 6 near 45° for the thicker-walled cylinders.

Anisotropic effects are also most significant for the higher frequencies
when © is near 45°. The anisotropic effects are negligible for all values

of © not between about 35° and 55° for both types of stacking sequences.
Transverse shearing has a significant effect on the axial compressive
buckling load of thick-walled cylinders. The higher-order theory predicts
buckling loads which are as low as 65% of those predicted by the first-order
theory for some thick-walled cylinders. Transverse shear deformation does
not affect the natural vibration frequencies as strongly as it affects the
axial compressive buckling load. The natural vibration frequencies of
laminated cylinders subjected to axial compressive loads indicate that the

natural vibration frequency is reduced only when the compressive load
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approaches the critical buckling load of the cylinder which is not
vibrating. The significance of the applied compressive load on the
vibration frequencies is dependent upon the laminate, the cylinder geometry
and the wave number. For higher frequencies an axial compressive buckling
load is not significantly affected by the applied vibration unless the
frequency is within 20% of the natural frequency of the unloaded cylinder.
For lower frequencies the buckling load may be affected significantly when
the applied vibration is much less than 20% of the natural vibration

frequency of the unloaded cylinder.
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